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1. INTRODUCTION

There are many types of non-linearities which display a wide-varying nature of
restoring forces and natural frequencies of a system. The varying nature of the
vibration can be analyzed using di!erent time}frequency and time}scale
approaches. This includes the application of the Hilbert transform [1, 2],
Wigner}Ville distribution [3], Gabor transform [4] and wavelets [5}8].

Most of the work done in this area is based on an impulse excitation and
therefore utilize only the system response. Although the classical input}output
analysis given by the frequency response function (FRF) is well known and
established for linear systems, it requires an extension for non-linear and
non-stationary processes. The "rst few attempts include the generalized FRF based
on evolutionary spectrum [9] and wavelet [10] approach.

The results given by these techniques are still limited. The object of the current
paper is to show that cross-wavelet analysis can give new insights with respect to the
input}output system identi"cation.

2. CROSS-WAVELETS

One of the aims of this paper is to give an interpretation of the cross wavelet. The
authors found that this is better achieved using the Riesz Representation theorem
in Hilbert function spaces to explain wavelet analysis. Very brie#y, a function space
is a vector space whose member components are functions of time or of a discrete
index. It is well known that the mother wavelet t(t) generates a family of wavelets
indexed by scale a and translation b as follows:
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This vector family can be used to analyze a time signal X (t), by taking the
function}space inner product of each member t

a,b
(t) with X(t); the result of the
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wavelet transform. The wavelet transform=
a,b

(X) can be de"ned as [11]
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The importance of this equation is that it represents that inner product in Hilbert
space as the operation of the adjoint wavelet t*

a,b
on the analyzed vector X. This

emphasizes that the inner product (2) is an operator which transforms X into
a scalar. This is the component of X appeared in the synthesized (reconstruction)
formula with the dual wavelet ta,b. The reconstruction formula has a meaning only
when the wavelet function ta,b (t) satis"es appropriate admissibility conditions
[12].

For any two time signals, the input X and the output Y of a system, the cross
wavelet transform is the inner product of the output Y with a transformed version
of the input X:
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Here t
a,b

t*
a,b

is the transformation operator. Therefore, the cross analysis can be
interpreted as taking the inner product of the output Y with a transformed version
of the input X. The e!ect of this transformation on X can be studied following the
space projection:

CR&"t*
a,b C&"ta,b CR, (4)

where CR denotes the space of all time signals able to undergo wavelet
transformation and C is the "eld of scalar complex numbers.

This projection shows that t*
a,b
"rstly calculates the components =

a,b
of the

signal X with respect to the dual wavelet ta,b and then multiplies it with t
a,b

. The
entire operation yields a new vector in CR which, is considered to be the projection
of X parallel to the wavelet t

a,b
. The value of =

a,b
indicates the shrinkage or

enlargement of t
a,b

. Therefore, the projection given by equation (4) identi"es the
amount of t

a,b
in X, or the amount of X at scale a and translation b. The inner

product of this vector with Y gives the similarity of Y with the projected component
of X at scale a and translation b onto the vector t

a,b
. Equation (3) asserts that the

inner product is the cross-wavelet analysis of the corresponding wavelet
transforms.

A similar analysis as above, reveals the similarity between the cross-wavelet
analysis and the classical FRF. The use of complex exponential functions e+ut,
instead of the wavelets t

a,b
, in equation (2) results the Fourier transform of a

signal X:

X(u)"Seu , XT"(eu)*X, (5)
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where the complex exponentials e+ut are indexed by the angular frequency u. The
ratio of Y(u) to X (u) is the classical FRF:

FRF(u)"
Seu , YT
Seu , XT

"

(X)*eu (eu)*Y
(X)*eu (eu)*X

. (6)

Using equation (3), FRF can be expressed as the cross analysis of the Fourier
transforms

FRF(u)"
X(u)Y (u)

X(u)2
"

Y (u)X(u)
X(u)2

(7)

This is an alternative way of representing the classical FRF. By virtue of equation
(7), it can be seen that the frequency response is the normalized similarity between
the input and the projection of the output parallel to the wave eu . The
normalization is given by the energy of X at frequency u.

The frequency response function however, gives only information in frequency
domain ignoring the time at which each frequency component occurs. On this
ground, a function similar to a time-varying FRF can be de"ned utilizing the cross
wavelet analysis of equation (3). Therefore, one can de"ne a scale, translation
response function as

STRF(a, b)"
=a,b (X)=a,b(Y)

(=a,b (X))2
"

=a,b(X)=a,b (Y)
(=a,b (X))2

. (8)

Equation (8) can be interpreted as follows; "rstly, it breaks the output
into wavelet of scale a and translation b and enlarges or shrinks it by an amount
that it would have been used by reconstruction formula [12]. This wavelet is
further used to identify its similarity with the input at same scale and
translation. Inducing from the classical FRF, the maxima of this similarity should
coincide with resonances in the system. Any spread around them over the
translation and scale plane should give an indication of the time-varying damping
of the system.

3. RESULTS

The Du$ng oscillator is one of the bench marks for non-linear analysis. It is also
used here for a comparative cross-wavelet study with a linear single-degree-of-
freedom system using the cross-wavelet analysis. The equation of motion of Du$ng
oscillator used is given by

yK#10yR #104y#106y3"x, (9)
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whereas that of the linear system by

yK#10yR #104y"x. (10)

Both of the oscillators are considered to consist of 1 kg mass, 10 Ns/m damping and
104 N/m of linear sti!ness. The Du$ng oscillator in addition includes a 106 N/m3
cubic sti!ness.

The FRFs of the Du$ng and linear oscillator are shown in Figures 1 and
2 respectively. The input used in the analysis is a chirp signal shown in Figure 3(a).
Because of its frequency sweeping nature it is widely used for vibration testing.
A controlled frequency band of chirps allows for the response time history able to
show the structural resonances. Their mathematical wavelet analysis is given in
reference [13]. The chirp signal shown at Figure 3(a) starts at frequency of 5 Hz and
crosses 80 Hz in 2 s.

The mother wavelet used for this study is the Morlet wavelet de"ned by the
following function:

t(t)"e+u0te~t2@2 . (11)

The wavelet transform is not related explicitly with any of the conventional
time}frequency signal decomposition methods. Nevertheless, a relationship
Figure 1. Frequency response function of the linear oscillator: (a) Amplitude, (b) phase.



Figure 2. Frequency response function of the Du$ng oscillator: (a) Amplitude, (b) phase.
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between the scale and frequency can be given by [14]
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, (12)

where a
f

is the scale value at which, the wavelet "lter centres when analyzing the
signal frequency f

x
, f

s
denotes the sampling frequency of the analyzing signals

whereas f
w

is the sampling frequency of the wavelet. Both sampling frequencies for
this study were taken to be 500 Hz each. The base angular frequency u

0
of the

Morlet wavelet was chosen to be 1)75n rad/s, so this value satis"es the wavelet
admissibility condition. The wavelet transform has been calculated over 200 scales
starting from a minimum scale value of 0)0035.

The time history of the response of the linear and non-linear system is shown in
Figures 3(a) and 3(b) respectively. Figure 4 shows the wavelet transform of the input
chirp signal. Here, the continuous frequency ranges 5}80 Hz can be observed. The
wavelet transform of the linear system in Figure 5 shows that the response is mainly
around the logarithmic scale of 1)2 (13)86 Hz)}1)3 (17)46 Hz). These frequencies
correspond to the working bandwidth of the system around the resonance of
15)55 Hz.

Figure 6 shows the wavelet transform of the Du$ng oscillator response. In
Figure 3(c) the sudden increase in dilation at 0)9 s of the Du$ng oscillator time



Figure 3. (a) Chirp signal input, (b) output of the linear oscillator, (c) output of the Du$ng oscillator.
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response indicates that the output frequency does not follow the input frequency. In
the wavelet transform domain of Figure 6 this shows up as a sudden decrease of the
scale.

The cross-wavelet analysis between the output Y of the system and the input X is
shown in Figure 7 for the linear and in Figure 8 for the non-linear system. In
Figures 7(a) and 8(a) the 3-D plots of the magnitude of the cross-wavelet transform
is shown. It is clear that this gives the overall information about the system in both
time and frequency domain. If one takes cross-sections across the translation axis it
will reveal the scale (frequency) response function at that time. Therefore,
information about the frequency characteristics at that time will be evident. Any
high values mean that the system at that time instant is responding vividly to an
input with the corresponding scales. Next taking cross-sections across the scale



Figure 4. Wavelet transform of the chirp input.

Figure 5. Wavelet transform of the linear oscillator output.
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axis, information is available about the evolutionary response of the system to the
input at that scale. The cross-wavelet contour plots are shown in Figures 7(b)
and 8(b) for the linear and Du$ng oscillator respectively. They can be utilized to
observe the e!ect of non-linearity in terms of the varying input frequency content;
one can use equation (12) to obtain the corresponding frequency at the scale of the
observation.

Here, the cross-wavelet transform enhances the similarities between the wavelet
transforms of the input and output. The fact that the input is used is an advantage
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over the continuous wavelet transform methods used in the past, where the analysis
of the impulse response of the non-linear system was used [7, 15]. It is known that,
because of its time localization, an impulse input does not excite the higher order
frequencies of non-linear system. As a consequence a more general signal that is
well spread in time and frequency can be used. In such a case, the FRF reveals
information as the system was excited by a single harmonic all the time and
responds with a simple harmonic all the time. This means that any existing
sub-resonance frequencies or super-resonance frequencies can only be interpreted
as being due to a single harmonic input of the same frequency. Cross-wavelet
Figure 6. Wavelet transform of the Du$ng oscillator output.

Figure 7. Cross-wavelet analysis of linear oscillator: (a) Amplitude, (b) amplitude contour plot and
(c) phase.



Figure 7. Continued.
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circumvents this problem by localizing the similarities of the input and the output
at di!erent scales (frequencies). This indicates whether the response is the outcome:
(a) of an input with the same spectral characteristics (case of high values of
cross-wavelet) or (b) due to the non-linear structure responding on a previous input
with di!erent spectral characteristics. On these grounds when the wavelet
transform of the output of the Du$ng oscillator for Figure 6 is compared with
cross-wavelet amplitude of Figure 8(b) it can be deduced that the response after the
"rst second is because of the non-linearity. It is portrayed by the zero magnitude of
the cross-wavelet plot after the "rst second as it does not register any similarity with
the input.

Figures 7(c) and 8(c) show the phase di!erence of the cross-wavelet analysis over
the translation scale plane. This gives time-localized information about the lag of



Figure 8. Cross-wavelet analysis of Du$ng oscillator: (a) Amplitude, (b) amplitude contour plot
and (c) phase.
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output to the input at a speci"ed scale. A proper utilization of this information can
identify modal characteristics of the system. Any resonances can be identi"ed by
1803 phase di!erence and damping can be identi"ed by the rate of change of the
phase across the scales.

4. CONCLUSION

The cross-wavelet analysis has been used as an alternative approach to classical
input}output analysis based on the FRF. This study shows the similarities and
di!erences between these two approaches. A simple Du$ng oscillator example
shows that the cross-wavelet analysis is able to characterize a system in both time
and scale domains and therefore reveal its varying time}frequency nature. More
work is required to fully utilize the potential of the cross-wavelet analysis to the
study of non-linear systems.
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